"Gunter Skalen in der Praxis"

Gunter Scales in Operation

IM2006 Conference, Greifswald, 28-30 September, 2006

Otto E. van Poelje

(ovpoelje@rekenlinialen.org)

Historical Navigation Tools:

4. Map

5. Pair of Dividers
6. ... a Gunter Rule

Comparison Slide Rule and Gunter Scale

Unit Conversion between cm on A- and inches on B-scale of a generic slide rule

Unit Conversion between
 cm and inches on A scale of a conversion slide rule

Edmund Gunter's Book on the Sector and the Logarithms

Original Drawing of Gunter Scales, 1624

Front of a Gunter Rule

2-feet Standard Gunter Rule

Front Side

110

Back Side

Dead Reckoning - Example 1:
 Calculation of side BC in the Course Triangle

$$
\begin{align*}
& \frac{A B}{\sin (C)}=\frac{B C}{\sin (A)} \tag{1}\\
& 150=-B C \\
& \sin (70) \tag{2}\\
& \frac{\sin (30)}{\sin (30)}=\frac{B C}{B}
\end{align*}
$$

e.g.:
$\mathrm{AB}=$ Steered Course
$\mathrm{AC}=$ True Course
$\mathrm{BC}=$ Drift by Current/Wind

Dead Reckoning - Example 1:

Calculation of side BC in the Course Triangle

Parallel Sailing - Example 2:

Calculation of miles in 1 degree longitude (LON) at given latitude (CHO)

Mercator Map

When no reliable longitude was available, parallel sailing was a safer way.
For example, from Aberdeen to Bergen:
first East, then North, then East, so avoiding the Shetlands.
Easting distance depends on latitude: at the Equator $(\mathrm{CHO}=0)$ one degree contains 60 miles (LON), but at $60^{\circ} \mathrm{N}$ the parallel contains about 30 miles.
For this calculation, the Gunter rule contained the LON-CHO pair of scales on the front.

Coastal Navigation - Example 3:

Given a measured 35° elevation of a tower of known height $\mathrm{BD}=143$, determine the ship's distance DC to shore: $\boldsymbol{\operatorname { t a n }}\left(\mathbf{3 5}^{\circ}\right)=\mathbf{B D}: \mathbf{D C}$ or $\tan . \mathbf{3 5}^{\circ}$: $\mathbf{1}$: : BD : DC

The angle of depression of the vessel is ABC, and consequently is equal to the angle of elevation of the tower, BCD. Hence, making BD radius;

$$
\text { Rad. : tang. } 55^{\circ}:: \mathrm{BD}: \mathrm{DC} .
$$

Stretch the compasses on the line T, from 45 to 55 ; this will reach from 143 to 204 on the line N.

Coastal Navigation - Example 3:

Given a measured 35° elevation of a tower of known height $\mathrm{BD}=143$, determine the ship's distance DC to shore: $\boldsymbol{\operatorname { t a n }}\left(\mathbf{3 5}^{\circ}\right)=\mathbf{B D}: \mathbf{D C}$
or $\tan .35^{\circ}: \mathbf{1}: \mathbf{:}$ BD : DC

Financial Arithmetic - Example 4:

Given a sum of 2500 gold pieces, loaned at a yearly interest of 20%, determine the compound debt accrued over 4 years:

$$
\text { total debt }=2500 \times(1+0.20)^{4}
$$

Financial Arithmetic - Example 4:

Given a sum of 2500 gold pieces, loaned at a yearly interest of 20%, determine the compound debt accrued over 4 years:

$$
\text { total debt }=2500 \times(1+0.20)^{4}
$$

Financial Arithmetic - Example 4:

Given a sum of 2500 gold pieces, loaned at a yearly interest of 20%, determine the compound debt accrued over 4 years:

$$
\text { total debt }=2500 \times(1+0.20)^{4}
$$

Financial Arithmetic - Example 4:

Given a sum of 2500 gold pieces, loaned at a yearly interest of 20%, determine the compound debt accrued over 4 years:

$$
\text { total debt }=2500 \times(1+0.20)^{4}
$$

Financial Arithmetic - Example 4:

Given a sum of 2500 gold pieces, loaned at a yearly interest of 20%, determine the compound debt accrued over 4 years:

$$
\text { total debt }=2500 \times(1+0.20)^{4}
$$

Financial Arithmetic - Example 4:

Given a sum of 2500 gold pieces, loaned at a yearly interest of 20%, determine the compound debt accrued over 4 years:

$$
\begin{aligned}
\text { total debt } & =2500 \times(1+0.20)^{4} \\
& =5184
\end{aligned}
$$

Non-integer Exponentiation - Example 5:
Determine 3 times 1.2 to the power 2.5

$$
3 \times(1.2)^{2.5}=
$$

Non-integer Exponentiation - Example 5:
Determine 3 times 1.2 to the power 2.5

$$
3 \times(1.2)^{2.5}=
$$

CHORDS - Example 6:

Use of the Chord Scale to Construct a Unit Circle around chord (60°)

CHORDS - Example 6:

Use of the Chord Scale to Construct

 an Angle of 30°

