"Gunter Skalen in der Praxis"

Gunter Scales in Operation

IM2006 Conference, Greifswald, 28 - 30 September, 2006

Otto E. van Poelje

(ovpoelje@rekenlinialen.org)

Historical Navigation Tools:

- 4. Map
- 5. Pair of Dividers
- 6. ... a Gunter Rule

Comparison Slide Rule and Gunter Scale

Unit Conversion between *cm* on A- and *inches* on B-scale of a generic slide rule

Unit Conversion between *cm* and *inches* on A scale of a conversion slide rule

Unit Conversion between *cm & inches* on a Gunter scale is a "proportion", in historical notation: 1:2.54 :: 1.8:4.572

Edmund Gunter's Book on the Sector and the Logarithms

Num.		1	2	3 4 5	6 7 8 9 10
68 Jan.		۶8	10 08	20 02	30 9 40 45
1 Sin. 2	ر. ر		10	20 30	40 50 66 70 849

Original Drawing of Gunter Scales, 1624

Front of a Gunter Rule

24 23	22	21	2	, mur	19	qш	18	1	7 '	16	· · · .	15	1 1	14	13	h	12	uliu	11	10	0	9	1	8		7	цш	6	firit	5	1111	4	3	thur	2	1	mpm
2 4 8 8	1		2	3		4	5		8		7		8	<u>۽</u>		10	L E RU			3 4 3 4	3	4	5 Marina		7 2 1 4 5	8 3 4 8 7 8	9 5 6 8 10	10 1 7 8	2			1 8 1		40	6 9		1 7 9 RU 10 1 1.0
																6	51 TA			30	60 70 20 40	50		60			1 17	710 0		- ling	. 110	POULT	30	10 . 5		. 710 .	BO SOCH
19	18 1	7 16	15 1	13	12	11	10	9	8	76	5	4	3	2	1		5* 110	T 10 2	0304050	80 70	80 90	100	110	120	13	0	1	40	I		1 50						16

2-feet Standard Gunter Rule

3	4 5	1 6 17 8	S.R.hu
	30	4	TRhu
5 6	7 8	9 10	Num
30 /40		60 70 80	sin
	70 60 50	40 30 8 9	V-Sin
30 60	40	50 45	Tan
.20	10		Mer
10	9111	PARIAS	E.P.

Dead Reckoning - Example 1: Calculation of side BC in the Course Triangle

Dead Reckoning - Example 1: Calculation of side BC in the Course Triangle

Parallel Sailing - Example 2: Calculation of miles in 1 degree longitude (LON) at given latitude

(CHO)

When no reliable longitude was available, parallel sailing was a safer way. For example, from Aberdeen to Bergen: first East, then North, then East, so avoiding the Shetlands. Easting distance depends on latitude: at the Equator (CHO=0) one degree contains 60 miles (LON), but at 60° N the parallel contains about 30 miles. For this calculation, the Gunter rule contained the LON-CHO pair of scales on the front.

Coastal Navigation - Example 3: Given a measured 35° elevation of a tower of known height BD = 143, determine the ship's distance DC to shore: tan (35°) = BD : DC or tan. 35° : 1 :: BD : DC

The angle of depression of the vessel is ABC, and consequently is equal to the angle of elevation of the tower, BCD. Hence, making BD radius;

Rad. : tang. 55° : : BD : DC.

Stretch the compasses on the line T, from 45 to 55; this will reach from 143 to 204 on the line N.

Coastal Navigation - Example 3: Given a measured 35° elevation of a tower of known height BD = 143, determine the ship's distance DC to shore: tan (35°) = BD : DC or tan. 35° : 1 :: BD : DC

Financial Arithmetic - Example 4:

Given a sum of 2500 gold pieces, loaned at a yearly interest of 20%, determine the compound debt accrued over 4 years:

Num.	- f	1	2	3 4	5 6 7 8 9 10
68 Jan.	کہ ا	8 1.2	10 ⁰⁸ 01	20 02	30 9 40 45
1 Sin. 2	5,		10	20	30 40 50 60 70 000

Non-integer Exponentiation - Example 5: Determine 3 times 1.2 to the power 2.5

 $3 \times (1.2)^{2.5} =$

Num.	<u> </u>	1	2	3	4	5 6	7 8 9 10
68 Jan.		-58	10 ⁰⁸ 01		20 02	30	9 40 25 45
1 Sin . 2	ر		10	-1	20	30 ,4	0 50 60 70 000

Non-integer Exponentiation - Example 5: Determine 3 times 1.2 to the power 2.5

$3 \times (1.2)^{2.5} =$

Num.	5 1	2	3 4	5 6 7 8 9 10
68 Jan.	×8	10 08	20 02	30 9 40 45
1 Sin. 2	5	10	20	30 40 50 60 70 000

CHORDS - Example 6: Use of the Chord Scale to Construct a Unit Circle around chord (60°)

